Web Lesson 15:

The Interactive Web-Lesson below has questions embedded
So do it carefully, as your answers are sent to me!

  • When a question pops up, if you want to see the movie again, click ‘Hide(top right corner)
  • You CAN'T retry a ‘flopped’ question: So PAY ATTENTION and THINK!
  • When you get a question ‘CORRECT’, you'll get an opportunity to ‘SKIP’ the explanation:
    Click the arrow in the right (but be quick!)
 
 
Transformations - Part III:
 
 

Graphs > Transformations III > Modulus Transformation

The movie shows you how to add ‘The Modulus Transformation’ to our existing suite of rules for transformations...

Whomever wrote the movie is a lazy suck-face because he didn't bother to use a flow diagram for each question - but in the hints below, I will use a FLOW DIAGRAM almost all the time the movie, they don't bother

e.g. Sketch: \(y\,=\,2 -\,\left| x^2+1 \right|\)

Rule 1:

Replace the ‘thing’ inside the brackets with: f(x)

         y  =  2 - │ x²+1 
                    └──┬─┘
                       ├──────────────────────┐
                       ▼                      ▼
         y  =  2 - │ f(x)                  f(x) = x² + 1
 

And call these equations (1) and (2)

         y  =  2 - │ f(x)                  f(x) = x² + 1
        └──────────────────┘               └──────┬───────┘ 
           equation (1)                     equation (2)
 

Rule 2:

Sketch equation (2)

                                            f(x) = x² + 1
                                           └──────┬───────┘
                                          ┌───────┴──────┐ 
                                          │ equation (2) 
                                          └───────┬──────┘
                                                  │
                                        ┌─────────┴─────────┐
                                         start with y = x² │
                                        │  shift up by ‘1’  │
                                        └───────────────────┘
 

Rule 3:

Looking at equation (1), transform your sketch of f(x) to achieve the sketch

  
 MODULUS outside the brackets   MODULUS  inside the brackets
└──────────────────┬──────────────────┘└────────────────────┬─────────────────┘
  ┌────────────────┴────────────────┐     ┌─────────────────┴────────────────┐
  │  Reflect the bit of the curve   │     │  Erase anything left of y-axis   │ 
  │    that is below the x-axis     │     │ then reflect the remaining curve │
  │        (in the x-axis)          │     │  in the y-axis and back again    │
  └─────────────────────────────────┘     └──────────────────────────────────┘
          
 
 
                       ┌──────────────────┐
                    ┌──┴─┐                
         y  =  2 - │ f(x)               
                 ▲      ▲    ┌──────────┴──────────┐
                 └───┬──┘     you've sketched f(x)
                     │       └─────────────────────┘
                      │          ┌──────────────────────────────────────┐
                     └──────────┤ The MODULUS is outside the brackets  │
                                │ so reflects the bit below the x-axis 
                                           (in the x-axis)            │
                                └──────────────────────────────────────┘
                
                                    ┌──────────────────────────────────────┐
                └────────────────────┤ The NEGATIVE is outside the brackets │
                                     │ so reflects the curve in the y-axis  │
                                     └──────────────────────────────────────┘
               
                                           ┌────────────────────────────────┐
               └────────────────────────────┤ The +2 is outside the brackets │
                                            │ so shifts the curve ... by ... │
                                            └────────────────────────────────┘
 

Rule 4:

Label each of the curve sections properly:

 
 For the bit that DIDN'T get     For the bit that DID get
 reflected when the MODULUS      reflected when the MODULUS
 transformation was applied      transformation was applied
└──────────────────┬─────────────────┘   └──────────────────┬─────────────────┘
┌──────────────────┴──────────────────┐ ┌───────────────────┴───────────────────┐
│  Replace the modulus with brackets  │ │ Replace the modulus with -ve brackets │ 
│               │   │        (    )   │ │              │   │           -(    )  │
└─────────────────────────────────────┘ └───────────────────────────────────────┘
 

 

For each question below, you must also state clearly the transformations you have made and label separately the line portions of the transformed curve

 

Question 1: Produce a detailed sketch of: \(y\,=\,\left| 2x-6 \right|\)
(a detailed sketch need to show any intercepts with the axes and any turning-points/vertices)

Clue: 
 
Replace the ‘thing’ inside the brackets with ‘f(x)’:
 
         y  =  │ 2x - 6 │
                └──┬───┘
                   ├──────────────────┐
                   ▼                 
         y  =  │ f(x)           f(x) = 2x - 6
        └──────────────┘        └───────┬─────┘ 
          equation (1)                  
                                ┌───────┴──────┐ 
Start with a sketch of EQN 2:   │ equation (2) 
                                └───────┬──────┘
                                        │
                        ┌───────────────┴───────────────┐
                         This is just a straight line: │
                        │ with y-int=-6 & grad =  2up                          1across │
                        └───────────────────────────────┘ 
 
Now that you've sketched f(x), equation 1 tells you what other transformations you need to apply:
 
                   ┌─────────────────────┐
                ┌──┴─┐                   
         y  =  │ f(x)                   
               ▲      ▲   ┌──────────────┴──────────────┐
               └───┬──┘    you've already sketched f(x)
                   │      └─────────────────────────────┘ 
                   │
                   │                  ┌──────────────────────────────────────┐
                   └──────────────────┤ The MODULUS is outside the brackets  │
                                      │ so reflects the bit below the x-axis 
                                                 (in the x-axis)            │
                                      └──────────────────────────────────────┘ 
 
Now label the two curve portions;   y  =  │ 2x - 6 │  ────────────────────┬────────────────┐
                                                           ┌──────────────┴──────────────┐ 
The bit that DIDN'T get reflected:  y  =  ( 2x - 6 ) ◄─────┤modulus changes into brackets 
                                                           └─────────────────────────────┘ 
                                                           ┌───────────────────────────────┤
The bit the   DID   get reflected:  y  = -( 2x - 6 ) ◄─────┤modulus changes to -VE brackets 
                                       =   -2x + 6         └───────────────────────────────┘
 
Finally, since we are asked for a detailed sketch, we must also show any roots,
y-intercept, turning points…
 

 

 

 

Question 2: Produce a detailed sketch of: \(y\,=\,\left| x^3-8 \right|\)

Clue: 
 
Follow the same method as in the above question…
 
Here's an applet for you to check - but DON'T forget to label the two portions
 

 

 

Question 3: Produce a detailed sketch of: \(y\,=\,\left| 1-x^2 \right|\)

Clue: Replace the ‘thing’ inside the brackets with ‘f(x)’:
 
         y  =  │ 1 - x² │
                └──┬───┘
                   ├──────────────────┐
                   ▼                 
         y  =  │ f(x) │          f(x) = 1 - x²
        └──────────────┘        └───────┬─────┘ 
           equation (1)                 
                                ┌───────┴──────┐ 
Start with a sketch of EQN 2:   │ equation (2)  
                                └───────┬──────┘
                                        │
                          ┌─────────────┴────────────┐
                           This is the curve y = x² │
                          │  then reflect in x-axis  │
                          │    then shift up by ...  │
                          └──────────────────────────┘ 
 
Now that you've sketched f(x), equation 1 tells you what other transformations you need to apply:
 
 
                   ┌──────────────────────┐
                ┌──┴─┐                    
         y  =  │ f(x) │                   
               ▲      ▲    ┌──────────────┴──────────────┐
               └───┬──┘     you've already sketched f(x)
                   │       └─────────────────────────────┘
                   │
                   │              ┌──────────────────────────────────────┐
                   └──────────────┤ The MODULUS is outside the brackets  │
                                  │ so reflects the bit below the x-axis 
                                             (in the x-axis)            │
                                  └──────────────────────────────────────┘
 
Now label the curve portions;       y  =  │ 1 - x² │  ────────────────────┬────────────────┐
                                                           ┌──────────────┴──────────────┐ 
The bit that DIDN'T get reflected:  y  =  ( 1 - x² ) ◄─────┤modulus changes into brackets│ 
                                                           └─────────────────────────────┘ 
                                                           ┌───────────────────────────────┤
The 2 bits that DID get reflected:  y  = -( 1 - x² ) ◄─────┤modulus changes to -VE brackets│ 
                                       =   x² - 1          └───────────────────────────────┘
 
Now, since we are asked for a detailed sketch, we must also show any roots, y-intercept,
turning points…    
 

 

 

 

Question 4: Produce a detailed sketch of: \(y\,=\,\left| \left( x+3 \right) \left( x-9 \right) \right|\)

Clue:
  
Remember that y = (x + 3)(x - 9) can be easily sketched (not using transformations,
but using roots and y-intercept)
 

 

 

 

Question 5: Produce a detailed sketch of: \(y\,=\,\left| \ln \left( \frac{1}{2}x \right) \right|\)

Clue: In case you've forgotten (tut tut) this is what  y = ln x  looks like:
 
      
 

 

 

Question 6: Produce a detailed sketch of: \(y\,=\,\left| 2x-6 \right|-4\)

Clue: Replace the ‘thing’ inside the brackets with ‘f(x)’:
 
         y  =  │ 2x - 6 │ - 4
                └──┬───┘
                   ├──────────────────────────┐
                   ▼                          ▼
         y  =  │ f(x) │ - 4                 f(x) = 2x - 6
        └──────────────────┘               └───────┬─────┘ 
            equation (1)                           
                                           ┌───────┴──────┐ 
Start with a sketch of EQG:                │ equation (2) 
                                           └───────┬──────┘
                                                   │
                                      ┌────────────┴────────────┐
                                       This is a straight line │
                                      │  y-int = -6; grad = 2/1 │
                                      └─────────────────────────┘
 
Now that you've sketched f(x), equation 1 tells you what other transformations you need to apply:
 
                   ┌──────────────────────────┐
                ┌──┴─┐                        
         y  =  │ f(x) │  - 4                  
               ▲      ▲   ▲    ┌──────────────┴──────────────┐
               └───┬──┘        you've already sketched f(x)
                   │      │    └─────────────────────────────┘
                   │               ┌──────────────────────────────────────┐
                   └───────────────┤ The MODULUS is outside the brackets  │
                                   │ so reflects the bit below the x-axis 
                                              (in the x-axis)            │
                                   └──────────────────────────────────────┘
                          
                          │                 ┌────────────────────────────────┐
                          └─────────────────┤ The -4 is outside the brackets │
                                            │ so shifts the curve ... by ... │
                                            └────────────────────────────────┘
 

 

 

 

Question 7: Produce a detailed sketch of: \(y\,=\,\left| x^2-4x \right|+4\)

Clue:
 
Remember, y = x² - 4x can be sketched by factorising, using its roots and y-intercept…
 

 

 

 

Question 8: Produce a detailed sketch of: y = \(y\,=\,\,2 -\,\left| x^3-1 \right|\)

Clue: 
 
Re-write so the term with ‘x’ is on the left:
  
                  y  =    2  - │ x³ - 1 │
                         └┬┘└─────┬──────┘
                            ┌───┘
                          └────────────┐ 
                        ┌────┴───────┐┌─┴─┐
                  y  =   - │ x³ - 1 │  + 2
 
                  y  =   - │  f(x)  │  + 2
 

Start with a sketch of:  y = x³-1
Then perform the remaining transformations:
 
The ‘×-1’ is OUTSIDE the brackets, so it reflects the curve in the -axis
 
The ‘+2’ is OUTSIDE the brackets so it shifts the curve up by ‘……

 

An unknown function:

Below is a graph of \(y=f\left( x \right) \):

We are NOT told its equation: But we do know that \(f\left( x \right) \) is defined for \(0\leqslant x\leqslant 10\) and it has a root at \(x\,=\,0\) and another root at \(x\,=\,10\). The maximum point \(P\) is at \(\left( 1,5 \right) \).
It passes through the point \(Q\,=\,\left( 4, 1\right) \) and its gradient at \(Q\) is \(-\frac{3}{4}\)

The RANGE of \(y=f\left( x \right) \) is: \(0\leqslant yx\leqslant 5\)

Armed with this information about \(f\left( x \right) \) and the curve of \(y=f\left( x \right) \) (as shown above) and by using the same methods as in the movie, sketch the following curves.

Use squared or graph paper and use a different grid for each curve:

For each question, you must:

  • State clearly the transformations you have made
  • State the domain for which the transformed curve should be defined. Also state its range
  • Identify the point \(P'\) (where \(P\,=\,\left( 1,5 \right) \) is on the transformed curve); and if \(P'\) is a maximum point
  • Identify \(Q'\) (where \(Q\,=\,\left( 4,1 \right) \) is on the transformed curve); and state the gradient at \(Q'\)
  • Identify where the points \(\left( 0,0 \right) \) and \(\left( 10,0 \right) \) have moved to; and determine if they are STILL roots
  • Do you know the roots or the y-intercept of the transformed curve?

 

Question 9: Sketch: \(y\,\,=\,\,\left| \, f\left( x \right) -2 \right|\, \)

Clue:
 
I'm afraid your on your own here… 
 
But here's an applet to keep you company!
 
 

 

 

Question 10: Sketch: \(y\,=\,3\,-\,\left| \,2\,-\,f\left( x \right) \right|\,\)

Clue: 
 
Writing with the ‘x’ term first:

      y  =  - │ -f(x) + 2 │  +  3
 
There are quite a lot of transformations do do here, so let's get them done in the right order:
 
Firstly:
 
      y  =  - │ -f(x) + 2 │  +  3
                      ▲            ┌─────────────────────────────────┐
                      └────────────┤  The +2 is outside the brackets │
                                   │  so shifts the curve up by +2   │
                                   └─────────────────────────────────┘
 
Then:
 
      y  =  -  -f(x) + 2   +  3
              ▲           ▲            ┌─────────────────────────────────────┐
              └───────────┴────────────┤ The MODULUS is outside the brackets │
                                       │ so reflects bit below the x-axis    │
                                       │ in the x-axis                       │
                                       └─────────────────────────────────────┘
 
Next:
 
      y  =  - │ -f(x) + 2 │  +  3
                ▲                          ┌──────────────────────────────────────┐
                └──────────────────────────┤ The NEGATIVE is outside the brackets │
                                           │ so reflects the curve in the y-axis  │
                                           └──────────────────────────────────────┘
 
Next:
 
      y  =  - │ -f(x) + 2 │  +  3
            ▲                                  ┌──────────────────────────────────────┐
            └──────────────────────────────────┤ The NEGATIVE is outside the brackets │
                                               │ so reflects the curve in the y-axis  │
                                               └──────────────────────────────────────┘ 
 
Finally:
 
      y  =  - │ -f(x) + 2 │  +  3
                              ▲                     ┌────────────────────────────────┐
                              └─────────────────────┤ The +3 is outside the brackets │
                                                    │ so shifts the curve ... by ... │
                                                    └────────────────────────────────┘
 

NOTE: If you are seriously smart - I mean so smart that you annoy everyone else; you'll have realised that multiplying everything INSIDE the modulus by  ‘×-1’; it actually doesn't make any difference - which leads you to a quicker route!

 

 

Complete this web lesson on separate paper from any other homework

The pass mark (to avoid additional homework on this topic) is: 8/10

Show full workings and highlight your answers