Web Lesson 07: Binomial Expansions

The Interactive Web-Lesson below has questions embedded
So do it carefully, as your answers are sent to me!

  • When a question pops up, if you want to see the movie again, click ‘Hide(top right corner)
  • You CAN'T retry a ‘flopped’ question: So PAY ATTENTION and THINK!
  • When you get a question ‘CORRECT’, you'll get an opportunity to ‘SKIP’ the explanation:
    Click the arrow in the right (but be quick!)
 
 
Binomial Expansions:
 
 

Binomial Expansions

To expand: (A + B)n

  • Write out the numbers of the nth line of Pascal's triangle
  • Then write decreasing powers of ‘A’ (starting with An), next to each of the numbers
  • Next, write increasing powers of ‘B’ (starting with B0), next to each of the numbers
  • Simplify carefully
  • Check you answer is correct [by putting any number (say, x=1.2) into the original expression and into your expansion. The answers should be the same...]

A few extra examples will demonstrate the process for you...

 

e.g. 1: Expand (2 + 3x)3
  1. Write out the numbers of the 3rd line of Pascal's triangle:
  2.  
        1               +       3               +       3             +       1
      
  3. Insert powers of ' 2 ' [starting from 2³ and decreasing the power]:
  4.  
        1(2)3           +       3(2)2           +       3(2)1         +       1(2)0 
     
  5. Insert powers of ' 3x ' [starting from (3x)0 and increasing the power]:
  6.  
        1(2)3(3x)0      +       3(2)2(3x)1      +       3(2)1(3x)2     +       1(2)0(3x)3 
      
     
  7. Simplify [Remember (anything)0 = 1 ],  [Remember (3x)2 = (3)2(x)2 = 9x2 ]
  8.  
        1(8)(1)        	+       3(4)(3x)       	+       3(2)(9x2)    	+        1(1)(27x3)
     
          8            	+         36x          	+         54x2        	 +             27x3 
     
  9. Use your calculator to CHECK [by putting x = (say) 1.2 into ‘the binomial’ and ‘your expansion’]
  10. To put x = 1.2 into: (2 + 3x)³: On the calculator, TYPE:  1.2    STO    x 

    Then TYPE:  (    2    +    3    x    )    x    3    = 

    That should give: "175.616"

    Now, let's use the calculator to put x = 1.2: into: 8 + 36x + 54x2 + 27x3:

    Then TYPE:  8    +    36    x    +    54    x    x²    +    27    x    x³    = 

    That should give: "175.616" ✔ correct

 

e.g. 2: Expand (3 - ½x)4
  1. Write out the numbers of the 4th line of Pascal's triangle:
  2.  
        1            +    4              +     6              +    4              +    1
     
  3. Insert powers of ' 3 ' [starting from 34 and decreasing the power]:
  4.  
        1(3)4        +    4(3)3          +     6(3)2           +   4(3)1          +     1(3)0 
     
  5. Insert powers of ' -½x ' [starting from (-½x)0 and increasing the power]:
  6.  
        1(3)4(-½x)0  +    4(3)3(-½x)1   +      6(3)2(-½x)2     +    4(3)1(-½x)3   +      1(3)0(-½x)4 
      
  7. Simplify [Remember (anything)0 = 1 ], [Remember (-½x)2 = (-½)2(x)2 = (+¼)(x²)  = ¼x2 ]
  8.  
        1(81)(1)    	+    4(27)(-½x)  	+      6(9)(¼x2)    	+    4(3)(-⅛x3)   	+     1(1)(1x4/16)
      
          81        	-       54x      	+        27x2       	-     3x3         	+       1x4
                                      	          2         	      2           	        16 
     
  9. Check
  10. To put x = 1.2 into: (3 - ½x)4: On the calculator, TYPE:  1.2    STO    x 

    Then TYPE:  (    3    -    ½    x    )    x    4    = 

    That gives: "………"

    Now, use the calculator to put x = 1.2: into: 81 - 54x + ²⁷⁄₂ x2 - ³⁄₂ x3 + ¹⁄₁₆ x4:

    Then TYPE:  81   -   54   x   +      ²⁷⁄₂   x   x²   -      ³⁄₂   x   x³   +      ¹⁄₁₆   x   x   4   = 

    That should give: "33.1776" ✔ correct

 

 

Question 1: Expand (1 + 2x)5
 
Clue:

1. Write out the numbers of the 5th line of Pascal's triangle:
 
     1         +   5         +   10         +   10         +   5         +   1
 
 
2. Insert powers of ' 1 ' [starting from 15 and decreasing the power]:
 
     1(1)5      +  5(1)4     +   10(1)3     +   10(1)2      +   5(1)1     +   1(1)0 
 
  
Note: We might as well IGNORE these ‘Powers of 1’ as any power of 1 gives: ‘1
 
     1         +   5         +   10         +   10          +   5         +   1
 
 
3. Insert powers of '2x' [starting from (2x)0 and increasing the power]:
 
     1(2x)0    +   5(2x)1    +    10(2x)   +   10(2x)     +   5(2x)     +   1(2x)5 
 
  
4. Simplify [Remember (2x)3 = (2)3(x)3 = 8x3]
 
     1(1)      +    5(…)     +    10(4x2)   +   10(…x3)     +   5(…x4)     +   1(32x5)


     1         +     …x      +       …x2    +     80x3      +     …x4      +       …x5 
 
 
5. Check:
To put x = 1.2 into: (1 + 2x)5: On the calculator, TYPE:  1.2    STO    x 
 
Then TYPE:  (    1    +    2    x    )    x    5    = 
 
That should give: "454.35424"
 
Now, let's use the calculator to put x = 1.2: into: 8 + 36x + 54x2 + 27x3:
 
Then TYPE:
 
 1   +  ……  x   +  ……  x   x²  +   80   x   x³ ……  x   x  4  ……  x   x  5   = 
 
That should give: "454.35424" ✔ correct
 

 

Question 2: Expand (1 + 2x)4
 
Clue:
  
Use the same method as you did in question 1 above, except this time, using the 4th line of
Pascal's triangle…
 
Again, this is easier than the examples in the movie and the 2 examples at the start of this
Web Lesson - because the ‘Powers of 1’ all just give ‘1’…
 
The correct answer is:   1   +   8x   +   …x2   +   32x3   +   16x4 
 

 

Question 3: Expand (2 - ½x)3
 
Clue: 
 
1. Write out the numbers of the 3rd line of Pascal's triangle
 
    1               +   3               +    3               +   1
 
 
2. Insert powers of '2' [starting from 23 and decreasing the power]
 
    1(2)3           +   3(2)           +    3(2)           +   1(2) 
 
 
3. Insert powers of '-½x' [starting from (-½x)0 and increasing the power]:
 
    1(2)3(-½x)0     +   3(…)2(…)1        +    3(2)(-½x)     +   1(2)0(…) 
 
 
4. Simplify
 
    1(8)(1)         +   3(…)(-½x)        +    3(2)(¼x2)      +    1(1)(-⅛x3) 
 
 
      8             -       …x           +         …x²       -          …x³
 
  
5. Check
   On the calculator, TYPE:  1.2    STO    x 
 
   Then type: (2 - ½x)3  on the calculator and note the answer
   Lastly, type: 8   -   …x   +   …x2   -   …x3  and see if it gives the exact same answer? 
 

 

Question 4: Expand: (1 + 2x)3 
 
Clue:
 
1. Write out the numbers of the 3rd line of Pascal's triangle
 
    1               +   3               +   3               +   1
 
 
2. Insert powers of '1' [starting from 13 and decreasing the power]
 
    1(1)3           +   3(1)           +   3(1)            +  1(1) 
 
=>  1               +   3                3               +   1
 
 
3. Insert powers of '2x' [starting from (2x)0 and increasing the power]:
 
    1(2x)0           +   3(…)1          +   3(2x)           +   1(…) 
 
 
4. Simplify
 
    1(1)             +   3(2x)          +   3(4x2)           +   1(…) 


     1               +     6x           +     …x²            +    …x³
 
  
5. Check
   On the calculator, TYPE:  1.2    STO    x 
 
   Then type: (1 + 2x)3 =  and note the answer…
   Lastly, type: 1   +   6x   +   …x2   +   …x3 and see if it gives the same answer?
 

 

Question 5:  Expand: (1 + ½x)4 
 
Clue: 
 
Use the same method as you did in question 4 above, except this time, using the 4th line of
Pascal's triangle and using ‘½x’ instead of ‘2x’…
 
The correct answer is:  1   +   2x   +   …x2   +   ½x3   +    …x4 
 

 

Question 6: Expand: (½ + ¾x)4 
 
Clue: 
 
1. Write out the numbers of the 4th line of Pascal's triangle
 
    1             +   4             +    6             +    4             +    1
 
 
2. Insert powers of '½' [starting from ½4 and decreasing the power]
 
    1(½)4         +   4(½)         +    6(½)          +    4(½)         +    1(½)0 
 
 
3. Insert powers of '¾x' [starting from (¾x)0 and increasing the power]:
 
    1(½)4(¾x)0    +    4(…)3(…)1    +     6(½)(¾x)    +     4(½)1(…)     +    1(½)0(¾x)4 
 
 
4. Simplify
         (½)4 = 1/16                   	(¾x)0 = 1x
         (½)3 = …                      	(¾x)1 = …
         (½)2 =                       	(¾x)2 =  9x²
                                                 16 
         (½)1 = 1/2                    	(¾x)3 = 27x³
                                                81 
         (½)0 = 1                      	(¾x)4 = …
  
 
5. Check
   On the calculator, TYPE:  1.2    STO    x 
 
   Putting x = 1.2 into: (½ + ¾x)3   gives: …
   Putting x = 1.2 into: 1/16   +   …x   +   …x2   +   …x3   gives: …
  

 

Question 7: Expand: (2x - 1)6 
 
Clue: Sorry, no help for this one…
 
 

 

Question 8: Expand: (1 + x²)3
 
Clue: 
 
1. Write out the numbers of the 3rd line of Pascal's triangle
 
2. Insert powers of ‘1’ [starting from 13 and decreasing the power]
 
   Note: You could just ignore these as all ‘powers of 1 are equal to ‘1’
 
3. Insert powers of    [starting from (x²)0 and increasing the power]:
 
    1(1)3(x²)0          +    3(1)2(x²)1          +    3(1)1(x²)2          +    1(1)0(x²)3 
 
 
4. Simplify
 
    1(1)                +    3(x2)               +    3(x4)              +    1(…) 

 
     1                  +     3x2                +    ………                +    ………

 
5. Check: 
   On the calculator, TYPE:  1.2    STO    x 
 
   Putting x = 1.2 into: (1 + x²)5   gives: …
   Putting x = 1.2 into: 1   +   3x2   +    …    +    …   gives: …
 
   Notice how, unlike the expansions we've done so far, the powers of ‘x’ in this expansion
   rise in steps of ‘2’?
 

 

Question 9: Expand: (x + 1/x)4 
 
Clue:  1(x)4(1/x)0  +   4(x)3(1/x)1  +   6(x)2(1/x)2  +   4(x)1(…)3  +   1(…)0(…)4 
 
 

 

Question 10: Expand: (2 + x)(2 - x)³
Clue: 
 
This question is a lot harder!
 
First expand (2-x)3 using Pascal's method to get: 8 - 12x +  ……  -  ……

Then we need to multiply out: (2 + x)(8 - 12x +  ……  -  ……)
 
Which involves a lot of arrows (8 to be precise) and some care in the simplifying

           ┌──┬────┬─────┬─────┐
           │  ▼    ▼     ▼     ▼
      (2 + x)(8 - 12x +  …  -  …)         =         16 - 24x  + 12x² -  …
       │      ▲    ▲     ▲     ▲                          8x  - 12x² +  …   -  …    +
       └──────┴────┴─────┴─────┘
                                                    -------------------------------
                                                    16 - 16x  + 0x²  +  …   -  … 

 
Check: When I put in x = 1.2 into (2 + x)(2 - x)³, I get:  ‘1.6384’
       Do you get the same when you put x = 1.2 into your answer?
 

 

The pass mark (to avoid additional homework on this topic) is 8/10

Hand in your workings and answers