Exercise 10.1

Complex Numbers

Imaginary Numbers

One way of solving a quadratic is to use the quadratic formula:

				 - b ± √ b² - 4ac 
				        2a         .
 

Part of this equation (b² - 4ac), is called the Discriminant. In the past, we have used the Discriminant in this way:

			    ┌───────────────┐
			    │ Discriminant: │
			    │    b² - 4ac   │
			    └───┬───┬───┬───┘ 
              ┌─────────────────┘   │   └─────────────────┐
              │	                    │	                  │
      ┌───────┴──────┐       ┌──────┴───────┐      ┌──────┴───────┐
       b² - 4ac > 0         b² - 4ac = 0        b² - 4ac < 0 
      └───────┬──────┘       └──────┬───────┘      └──────┬───────┘
      ╔═══════╧══════╗    ╔═════════╧═════════╗     ╔═════╧═══════╗
      TWO real roots    One (repeated) root     No real roots
      ╚══════════════╝    ╚═══════════════════╝     ╚═════════════╝
 

Strangely, even though we knew that negative numbers can't be square-rooted, we didn't simply say "NO ROOTS", we said, "NO REAL ROOTS", implying that there might be some "non-real" roots?

If we allow ourselves to assign a value to: √-1:

Let: -1  =   ⅈ      (ⅈ stands for 1-unit of an imaginary number)
 

Then, actually, we allow ourselves to square-root all negative numbers:

e.g.	     √-4  =  √4×-1   =  √4 × √-1 
			        └┬┘  └─┬┘
			         └─┐┌──┘
	                     =     2ⅈ
 
 
e.g.	  √-2.25  = √2.25×-1 = √2.25 × √-1 
	                       └─┬──┘  └─┬┘
	                         └──┐ ┌──┘
	                     =     1.5ⅈ
 

Imaginary numbers can be added to and subtracted from other imaginary numbers:

e.g.		  2ⅈ + 1.5ⅈ  =    3.5ⅈ
 

And, since we defined ‘’ as √-1:

-1  =   ⅈ 
		        SQR     SQR
		        -----------
		         -1  =   ⅈ²
 

Which means that the product or quotient of two imaginary numbers will always be a real number:

e.g.		  2ⅈ × 1.5ⅈ  =    3ⅈ²
			     =   3(-1)
			     =    -3
 

Complex Numbers

When a real number (such as ‘2’) is added to an imaginary number (such as ‘3’), the answer cannot be simplified:

e.g.		2   +   3ⅈ   =    2+3ⅈ
	       └┬┘     └─┬┘      └──┬─┘
	      real  imaginary    complex
 

So, the answer is called a complex number...

Complex numbers can be added/subtracted:

	┌────────────┬───────────┐
e.g.   (2 + 3ⅈ)  +  (2 - ⅈ)  =   4 + 2ⅈ
	 └─┬─┘        └─┬┘          └─┬┘
	   └────────────┴─────────────┘
 

And, they can be multiplied:

 ┌────────┬───┐
         ▼   ▼
(2 + 3ⅈ)×(2 - ⅈ)  =	4  - 2ⅈ + 6ⅈ - 3ⅈ²
      │    ▲   ▲   	  └───┬───┘   └┬┘   ┌───────────┐
      └────┴───┘	              └────┤ Remember: 
	                              ┌────┤  ⅈ² = -1	
			     ┌┴─┐     ┌┴─┐  └───────────┘
		  = 	8  +  4ⅈ   - 3(-1)
	
                  =	8   +   4ⅈ     + 3
 
                  =	11 + 4ⅈ
 

Conjugates

The conjugate of the complex number a + bⅈ is: a - bⅈ

When a complex number is multiplied by its conjugate, the answer is always a real number:

 ┌────────┬───┐
 │        ▼   ▼
(2 + 3ⅈ)×(2 - 3ⅈ)  =	4 - 6ⅈ + 6ⅈ  - 9ⅈ²
     │    ▲   ▲   	 └───┬───┘    └┬┘   ┌───────────┐
     └────┴───┘           cancel       └────┤ Remember: 
			                ┌───┤  ⅈ² = -1	
			               ┌┴─┐ └───────────┘
                   =	4           - 9(-1)
 
                   =	13
 
 
 ┌───────┬───┐
 │       ▼   ▼
(2 + ⅈ)×(2 - ⅈ)   =	4 - 2ⅈ + 2ⅈ  - ⅈ²
     │   ▲   ▲     	 └───┬───┘   └┬┘    ┌───────────┐
     └───┴───┘             cancel     └─────┤ Remember: 
			              ┌─────┤  ⅈ² = -1	
			             ┌┴─┐   └───────────┘
                  =	4          - (-1)
 
                  =	5
 

This property helps us to divide complex numbers. In the same way as we "Rationalise the Denominator" of a surd, we "Realise the Denominator" of a complex fraction by multiplying both the top and the bottom by the conjugate of the denominator:

(2 + 3ⅈ) ÷ (2 - ⅈ)  =	 2 + 3ⅈ
			 2 + ⅈ   .
 
		    =	(2 + 3ⅈ)(2 - ⅈ)	◄─ Did this before ─────┐
			(2 + ⅈ)(2 - ⅈ) 	◄───── Did this before ─────┐
					                             
		    =	 11 + 4ⅈ     	◄───────────────────────┘     
		     	    5      	◄─────────────────────────────┘
 
		    =	 11 + 4ⅈ
		     	  5   5 
 

Square-root of a Complex Number

At this stage in our understanding of complex numbers, it is quite difficult to square-root a complex number and the method we will use only works for a few select examples...

Later, we will learn a method that makes it much easier to square-root a complex number...

For now, the method is:

e.g. Find: √15 + 8ⅈ
Step 1: Since we don't know the answer, let's call it: a + bⅈ:
 
	√15  +  8ⅈ =   a + bⅈ
 
Step 2: Square both sides:
	
	 15  +  8ⅈ =  (a + bⅈ)²
 
	 15  +  8ⅈ =   a²    + 2abⅈ   + b²ⅈ²
				        └┬┘         ┌───────────┐
				         └──────────┤ Remember: 
				           ┌────────┤  ⅈ² = -1	
			                  ┌┴─┐      └───────────┘
	 15  +  8ⅈ =   a²    + 2abⅈ   + b²(-1) 
 
	 15  +  8ⅈ = (a²-b²) + 2abⅈ
	└─┬┘└──┬──┘  └──┬──┘└───┬──┘
        ┌─┴────┴────────┴───────┴─────┐     ┌──────────────┐
Step 3:    Equate the REAL parts                To give 
	   Equate the imaginary parts        two equations:
        └─┬────┬────────┬───────┬─────┘     └──────────────┘
          ────────────┘       
              └────────────────
       ┌──┴─────┐           ┌───┴─┐
	a²-b²=15     and     2ab=8
			    └──┬──┘
			   ┌───┴─────┐
	                    b = 4/a │
			   └───┬─────┘
	   ┌───────────────────┘
      a²-(4/a)²=15
 
      a² - 16  = 15
             
     ×a²  ×a²    ×a²
     ----------------
      a4 - 16  = 15a2  
 
      a4 - 15a2 - 16 = 0
 
      (a²+1)(a²-16)  = 0
      └─┬──┘└──┬──┘
  no solns  ┌──┴────────┐
	     a=4 or a=-4
	    └─┬─┘  └─┬──┘
	     b=1    b=-1
 
So:	√15  +  8ⅈ =   4 + ⅈ   or   -4 - ⅈ
		     └──┬──┘
	Note: This is the required answer,
        since the question asked for +√15+8ⅈ 
 

Note: The square-root of a complex number is always another complex number.
Also, just as for real numbers, the square-root of a number implies the positive root; but the solution to x² = 15 + 8ⅈ  would be: ±(4 + ⅈ)

 


Question 1, part (a): We can write ⅈ7 as:

	  ⅈ² × ⅈ² × ⅈ² × ⅈ
         └┬┘ └┬┘ └┬┘                ┌───────────┐
          └───┴───┴─────────────────┤ Remember: 
          ┌────┬────┬───────────────┤  ⅈ² = -1	
         ┌┴─┐ ┌┴─┐ ┌┴─┐             └───────────┘
	 (-1)×(-1)×(-1)× ⅈ
 				

Which simplifies to...
 

Question 1, part (b): We can write ⅈ-3 as:

-2 ×  ⅈ-2 × ⅈ					   
	
	  1/ⅈ² × 1/ⅈ² × ⅈ
           └┬┘  └┬┘                 ┌───────────┐
            └────┴──────────────────┤ Remember: 
          ┌────────┬────────────────┤  ⅈ² = -1	
         ┌┴─┐     ┌┴─┐              └───────────┘
       1/(-1) × 1/(-1) × ⅈ
 				

Which simplifies to...

 

 

Question 2, part (a): When adding complex numbers:

                ┌───────────────────┐
                 add the real ‘bits’
                └─────────┬─────────┘
 ┌────────────┬───────────┤
(3 + 5ⅈ)  +  (7 - ⅈ)  =  11 + 4ⅈ
  └─┬─┘        └─┬┘         └─┬┘
    └────────────┴────────────┤
                  ┌───────────┴────────────┐
                   add the imaginary ‘bits’
                  └────────────────────────┘
	
	

 

Question 3, part (a): When subtracting complex numbers:

              ┌────────────────────────┐
               subtract the real ‘bits’
              └───────────┬────────────┘
 ┌────────────┬───────────┤
(3 + 5ⅈ)    (7 - ⅈ)  =  -4 + 6ⅈ
  └─┬─┘        └─┬┘         └─┬┘
    └────────────┴────────────┤
                ┌─────────────┴───────────────┐
                 subtract the imaginary ‘bits’
                └─────────────────────────────┘
	
	

 

Question 4, part (a): Multiply out just as normal:

 ┌────────┬───┐
 │        ▼   ▼
(2 + ⅈ)×(3 - 4ⅈ)  =	6  - 8ⅈ + 3ⅈ - 4ⅈ²
      │    ▲   ▲   	  └───┬───┘   └┬┘   ┌───────────┐
      └────┴───┘	              └────┤ Remember: 
	                              ┌────┤  ⅈ² = -1	
			     ┌┴─┐     ┌┴─┐  └───────────┘
		  = 	6  -  5ⅈ   - 4(-1)
	
                  =	6  - 5ⅈ    +  4
 
                  =	…  - …ⅈ 
 	
	

Question 4, part (d): (3 + 4ⅈ) and (3 - 4ⅈ) are CONJUGATES 

If you call the first one z (i.e. z = 3 + 4ⅈ), then you can call the second one z* (i.e. z* = 3 - 4ⅈ)

Whenever we multiply conjugates, the answer will be real: z·z* is always real!

 

 

Question 4, part (f): We can treat this as a BINOMIAL EXPANSION:

\[{ \left( 1+i \right) }^{ 3 }=\\ \quad \quad \quad \quad \begin{matrix} 1 & +\;3\quad & +\;3\quad & +\;1\quad \\ 1{ i }^{ 0 } & +\;3{ i }^{ 1 } & +\;3{ i }^{ 2 } & +\;1{ i }^{ 3 } \end{matrix}\]

Then simplify the \{{i}^{0}\), \{{i}^{1}\), \{{i}^{2}\)...

 

 

Question 5, part (a): A fraction is not simplified unless the denominator is REAL

We need to to "Realise the Denominator" (multiply both the top and bottom of the fraction by (1 + ) - which is also called the conjugate of (1 - ):

	    =     2   (1 + ⅈ) 
	       (1 - i)(1 + ⅈ) 
 		
	    =  … + …ⅈ    
	       1 - ⅈ²  
	          └┬┘               ┌───────────┐
	           └────────────────┤ Remember: 
	      ⅈ² = -1	
                                    └───────────┘
	    =  … + …ⅈ    
	          2     
	
	    =  … + …ⅈ 
 
 

Question 5, part (b): Again, we need to to "Realise the Denominator" (multiply both the top and bottom of the fraction by
(4 + 3) - which is also called the conjugate of (4 - 3):

	    =  (3 + ⅈ) (4 + 3ⅈ) 
	       (4 - 3ⅈ)(4 + 3ⅈ) 
 		
	    =  12 + 13ⅈ + 3ⅈ²    
	         16 - 9ⅈ²      
                      └┬┘           ┌───────────┐
	               └────────────┤ Remember: 
				      ² = -1	
				    └───────────┘
 
	    =  … + …ⅈ
	         25    
 
	    =  … +  …ⅈ     or     1(… + …ⅈ)
	       25  25             25 
	     └──────────────┬─────────────┘
	    either of these is OK as the answer
  

  

Question 5, part (g): The conjugate of ⅈ is just: ⅈ

 

 

Question 6, part (a): Expanding the R.H.S:

   ┌───────┬───┐
   │       ▼   ▼
  (3 + ⅈ)×(2 - 3ⅈ)  =	6   - …ⅈ + …ⅈ  -  3ⅈ²
       │   ▲   ▲          └────┬────┘    └┬┘        ┌───────────┐
       └───┴───┘	                └─────────┤ Remember: 
			                  ┌────────┤  ⅈ² = -1	
			      ┌┴─┐        ┌┴─┐      └───────────┘
		    =	6   -  …ⅈ     -  3(-1)
 
		    =	6   -   …ⅈ     + 3
 
		    =	9 - …ⅈ

And (in case you didn't already see the answer):

					 x  +  yⅈ =     9   - …ⅈ
 					└─┬┘└──┬──┘   └─┬─┘└───┬┘
Step 3: Equate the REAL parts             └────────────┘      
	Equate the imaginary parts             └───────────────┘
 
					x=9  &  y=…
 
	

Question 6, part (b): You know that you need to simplify the fraction first (multiply top and bottom by 1+ⅈ), then equate the real parts and equate the imaginary parts...

 

 

Question 6, part (d): This is simple: equating the real parts and equate the imaginary parts:

				 x  +  yⅈ =     2   + 0ⅈ
				└─┬┘└──┬──┘   └─┬─┘└───┬┘
Equate the REAL parts             └────────────┘      
Equate the imaginary parts             └───────────────┘

 

 

Question 7, part (d): So the common denominator is:

  2    +    3      =        
3 + ⅈ     2 + ⅈ    	(3 + ⅈ)(2 + ⅈ) 
 

Which gives us:

  2    +    3      = 	   13 + …ⅈ
3 + ⅈ     2 + ⅈ   	(3 + ⅈ)(2 + ⅈ) 
 

But, we can't leave our answer like that! Expanding the denominator:

  2    +    3      =  	 13 + …ⅈ
3 + ⅈ     2 + ⅈ     	  5 + …ⅈ 
 

And finally, we need to "Realise the Denominator" (multiply both the top and bottom of the fraction by (5 - …ⅈ)

 

 

Question 7, part (f):

POLAR FORM:

\(\color{#e8b0d3}{R}\left( \cos {\color{#9ad6d5}{\theta} } \;+\; i\sin { \color{#9ad6d5}{\theta} } \right)\) is the polar form of a complex number

For instance: \(\color{#e8b0d3}{2}\left( \cos { \color{#9ad6d5}{⅙\pi} } \; +\; i\sin { \color{#9ad6d5}{⅙\pi} } \right)\) represents a complex number - the number is the point that is reached by a stick of length \(\color{#e8b0d3}{2}\), rotated at \(\color{#9ad6d5}{⅙\pi}\) from the x-axis:

Using a bit of simple trigonometry, we can work out the x- and y- coordinates of the point at the end of this stick:

The x-coordinate is found by: \(\color{#e8b0d3}{2} \cos { \color{#9ad6d5}{⅙\pi }}\)
The y-coordinate is found by: \(\color{#e8b0d3}{2} \sin {\color{#9ad6d5}{⅙\pi }}\) - and of course, this is along the imaginary-axis, so we could say: \(2i \sin { ⅙\pi }\)

Hence \(\color{#e8b0d3}{2}\left( \cos { \color{#9ad6d5}{⅙\pi} } \; +\; i\sin { \color{#9ad6d5}{⅙\pi} } \right)\) would give us both coordinates - and we will use this notation A LOT (we'll abbreviate it as: \(\color{#e8b0d3}{2}cⅈs\color{#9ad6d5}{{ ⅙\pi }}\))

 
Okay - lecture over - back to this question:

We have TWO choices:

We can work out: \(\cos { ⅓\pi }\) and \(\sin { ⅓\pi }\), then re-write as: \(\left(\color{#62be53}{ \frac { 1 }{ 2 } }\;+\; \color{#2b83c3}{\frac { ... }{ 2 }} i \right) ^{ 3 }\)

Alternatively, we could just expand it leaving the \(\cos { ⅓\pi }\) and \(\sin { ⅓\pi }\) as they are and fill in the numerical values later - this second way is messy, but interesting...

 

 

Question 8, part (a): This is rather a clumsy method, but for now, it is the only method we have to find the square-root:

Step 1: Since we don't know the answer, let's call it: a + bⅈ:
 
	√3  -  4ⅈ =   a + bⅈ
 
Step 2: Square both sides:
	
	 3  -  4ⅈ =  (a + bⅈ)²
 
	 3  -  4ⅈ =   a²    + 2abⅈ   + b²ⅈ²
				       └┬┘          ┌───────────┐
				        └───────────┤ Remember: 
 				         ┌──────────┤  ⅈ² = -1	
			                ┌┴─┐        └───────────┘
	 3  -  4ⅈ =   a²    + 2abⅈ   + b²(-1) 
 
	 3  -  4ⅈ = (a²-b²) + 2abⅈ
       └─┬┘└──┬──┘  └──┬──┘└───┬──┘
       ┌─┴────┴────────┴───────┴─────┐     ┌──────────────┐
Step 3:   Equate the REAL parts                To give 
	  Equate the imaginary parts        two equations:
       └─┬────┬────────┬───────┬─────┘     └──────────────┘
         ────────────┘       
             └────────────────
      ┌──┴────┐             ┌──┴───┐
       a²-b²=3     and       2ab=-4
          └┐                └──┬───┘
           └┐              ┌───┴──────┐
	                   b = -2/a               └───┬──────┘
	    ──────────────────┘
       a²--2²= 3 a⎭
      a² - 4   = 3
             
     ×a²  ×a²    ×a²
     ----------------
      a4 - 4  =  3a2  
 
      a4 - 3a2 - … = 0
 
      (a²+…)(a²-…)  = 0
      └─┬──┘└──┬──┘
  no solns  ┌──┴────────┐
	     a=… or a=…
	    └─┬─┘  └─┬──┘
	     b=1    b=-1
 
So:	√3  -  4ⅈ =   … - ⅈ   or   -… + ⅈ

If the question had said solve \({ z }^{ 2 }\;=\;3\;-\;4i\), then we'd give both answers, but it said find \(\sqrt{3\;-\;4i}\), we can just give the positive answer...

 

 

Question 8, part (b): Using the same method we used in part (a):

Step 1: Since we don't know the answer, let's call it: a + bⅈ:
 
	√21 - 20ⅈ =   a + bⅈ
 
Step 2: Square both sides:
	
	 21 - 20ⅈ =  (a + bⅈ)²
 
	 21 - 20ⅈ =   a²    + 2abⅈ   + b²ⅈ²
				       └┬┘          ┌───────────┐
				        └───────────┤ Remember: 
 				         ┌──────────┤  ⅈ² = -1	
			                ┌┴─┐        └───────────┘
	 21 - 20ⅈ =   a²    + 2abⅈ   + b²(-1) 
 
	 21 - 20ⅈ = (a²-b²) + 2abⅈ
       └─┬┘└──┬──┘  └──┬──┘└───┬──┘
       ┌─┴────┴────────┴───────┴─────┐     ┌──────────────┐
Step 3:   Equate the REAL parts                To give 
	  Equate the imaginary parts        two equations:
       └─┬────┬────────┬───────┬─────┘     └──────────────┘
         ├────────────┘       
             └────────────────┤
      ┌──┴─────┐            ┌──┴────┐
       a²-b²=21    and       2ab=-20
          └┐                └──┬────┘
           └┐              ┌───┴───────┐
	                   b = -10/a               └───┬───────┘
	    ──────────────────┘
       a²--10² = 21 a ⎭
      a² - 100   = 21
             
     ×a²  ×a²     ×a²
     ------------------
      a4 - 100 =   21a2  
 
      a4 - 21a2 - …  = 0
 
      (a²+……)(a²-……) = 0
      └─┬──┘└──┬──┘
  no real   ┌──┴────────┐
  solns	     a=…… or a=……
	    └─┬─┘  └─┬──┘
	     b=……    b=……
 
So:	√21 - 20ⅈ =   … - …ⅈ   or   -… + …ⅈ