╔═════════════════════════════════════════╗
╒═╩═╕ ║
𝑥 ² + 4𝑥 + 3 ║
╘═╦═╛ ║
╒══════╩════════════════════╕ ║
│Start by halving the number│ (𝑥 )² ║
│in-front of the 𝑥 term and ├┐ ║
│put into the brackets: │ (𝑥 + 2)² ║
╘═══════════════════════════╛ ║
Then subtract: (2)² (𝑥 + 2)² - (2)² ║
║
Simplify: (𝑥 + 2)² - ... ║
▼
Now bring down the units term: +3 (𝑥 + 2)² - ... + 3
╘════╤═════╛
┌────┴─────┐
│ simplify │
└────┬─────┘
╒══╧═══╕
The answer is: (𝑥 + 2)² - ...
The Casio FX991EX (classwiz) can check your ANSWER, so you're sure you got it right (or wrong!)
1) Use your calculator with the equation in the question to find the \(y\)-coordinate at \(x=\) (say) \(1.2\)
⬢ First store \(\color{var(--cyan)}{1.2\rightarrow x}\) on your calculator:
┌────────── you don't press ALPHA │ when STOring 1.2 as X ▼ On the calculator, TYPE: 1.2 STO𝑥
⬢ Then put \(\color{var(--cyan)}{x=1.2}\) into the equation given in the question (i.e. into \(x^2+4x+3\) )
TYPE:𝑥 x² + 4𝑥 + 3 =
2) Next, put \(\color{var(--cyan)}{x=1.2}\) into your completed square (if it's correct, this gives the same \(y\)-value you got in (1) )
TYPE: (𝑥 + 2 ) x² - ⋯ =
If you wish to understand what's going on here:
In (1) you're putting \(\color{var(--cyan)}{x=1.2}\) into the original equation for \(\color{var(--orange)}{y}\), so that's deffo the correct \(\color{var(--orange)}{y}\)-value at \(\color{var(--cyan)}{x=1.2}\)
In (2), putting the same value (\(\color{var(--cyan)}{x=1.2}\)) into your completed-square
Your completed-square is just a different way of writing original eqn - if correct; \(\color{var(--orange)}{y}\)-values will match!
To show this GEOMETRICALLY, click on the GEOGEBRA applet (above, in the lesson notes) and then edit the constants in the BLUE and RED boxes
Then keep clicking NEXT (if it says PAUSE but nothing is happening, CLICK-AGAIN)
Then you'll be able to produce a drawing that explains your completed square
Start with the SQUARE with sides \(\color{var(--fushia)}{x}+\color{var(--midgreen)}{2}\) :
Then show that chopping a square off of one corner is needed:
Why?
Because the striped area (the units term) is \(2^2\) (which is 4) but the units term of \(\color{var(--fushia)}{x^2} + \color{var(--green)}{4x} + \color{var(--midslate)}{3}\) is just \(\color{var(--midlsate)}{3}\)
...to finally end up with an a square - with a chunk removed (that's what we mean by completed-square), whose AREA is: \(\color{var(--fushia)}{x^2} + \color{var(--green)}{4x} + \color{var(--midslate)}{3}\)
╔════════════════════════════════════════╗
╒══╩═╕ ║
𝑥 ² + 10𝑥 + 12 ║
╘═╦══╛ ║
╒══════╩════════════════════╕ ║
│Start by halving the number│ (𝑥 )² ║
│in-front of the 𝑥 term and ├┐ ║
│put into the brackets: │ (𝑥 + 5)² ║
╘═══════════════════════════╛ ║
Then subtract: (5)² (𝑥 + 5)² - (5)² ║
║
Simplify: (𝑥 + 5)² - ... ║
▼
Now bring down the units term: +12 (𝑥 + 5)² - ... + ...
╘════╤══════╛
┌────┴─────┐
│ simplify │
└────┬─────┘
╒══╧═══╕
The answer is: (𝑥 + 5)² - ...
1) Use your calculator with the equation in the question to find the \(y\)-coordinate at \(x=\) (say) \(1.2\)
⬢ First store \(\color{var(--cyan)}{1.2\rightarrow x}\) on your calculator:
┌────────── you don't press ALPHA │ when STOring 1.2 as X ▼ On the calculator, TYPE: 1.2 STO𝑥
⬢ Then put \(\color{var(--cyan)}{x=1.2}\) into the equation given in the question
2) Next, put \(\color{var(--cyan)}{x=1.2}\) into your completed square (if it's correct, this gives the same \(y\)-value you got in (1) )
To show this GEOMETRICALLY, click on the GEOGEBRA applet (above, in the lesson notes) and then edit the constants in the BLUE and RED boxes
Then keep clicking NEXT (if it says PAUSE but nothing is happening, CLICK-AGAIN)
Then you'll be able to produce a drawing that explains your completed square
Pupils FLOP this type of question a lot - because the number in-front of the \(x^2\)-term is no longer ❛ \(\color{var(--mauve)}{1}\) ❜
We cannot complete the square if the coefficient of𝑥 ² ≠ 1 ┌ ┌─────────────┐ ┐ So FIRST, we need to factorise the 2 out: 2│ │𝑥 ² -𝑥 + │ │ └ └──────┬──────┘ ┘ COMPLETE-SQUARE FOR BIT IN BRACKETS ┌──────────────────┘ │ Halve the coefficient of 𝑥 ┌─────┴─────────────┐ and put into the brackets: │(𝑥 - 3)² │ │ │ Then subtract: (3)² │(𝑥 - 3)² - (3)² │ │ │ Simplify: │(𝑥 - 3)² - │ │ │ Then add the units term: +10 │(𝑥 - 3)² - + │ │ │ Simplify: │(𝑥 - 3)² + │ └─────┬─────────────┘ └──────────────────┐ ┌ ┌──────┴──────┐ ┐ RE-INSERT INTO THE SQUARE-BRACKETS 2│ │ (𝑥 -3)² + │ │ └ └─────────────┘ ┘
│ ▲ ▲ └───┴─────────┘
Finally, multiply out: 2(𝑥 - 3)² +
Again, the number in-front of the \(x^2\)-term is no longer ❛ \(\color{var(--mauve)}{1}\) ❜, so we need to adapt:
We cannot complete the square if the coefficient of𝑥 ² ≠ 1 ┌ ┌─────────────┐ ┐ So FIRST, we need to factorise the 3 out: 3│ │𝑥 ² -𝑥 + │ │ └ └──────┬──────┘ ┘ COMPLETE-SQUARE FOR BIT IN BRACKETS ┌──────────────────┘ │ Halve the coefficient of 𝑥 ┌─────┴─────────────┐ and put into the brackets: │(𝑥 - )² │ │ │ Then subtract: ( )² │(𝑥 - )² - ( )² │ │ │ Simplify: │(𝑥 - )² - │ │ │ Then add the units term: +12 │(𝑥 - )² - + │ │ │ Simplify: │(𝑥 - )² + │ └─────┬─────────────┘ └──────────────────┐ ┌ ┌──────┴──────┐ ┐ RE-INSERT INTO THE SQUARE-BRACKETS 3│ │ (𝑥 - )² + │ │ └ └─────────────┘ ┘
│ ▲ ▲ └───┴─────────┘
Finally, multiply out: 3(𝑥 - )² +
We cannot complete the square if the coefficient of𝑥 ² ≠ 1 ┌ ┌─────────────┐ ┐ So FIRST, we need to factorise the 4 out: 4│ │𝑥 ² +𝑥 - │ │ └ └──────┬──────┘ ┘ COMPLETE-SQUARE FOR BIT IN BRACKETS ┌──────────────────┘ │ Halve the coefficient of 𝑥 ┌─────┴─────────────┐ and put into the brackets: │(𝑥 + )² │ │ │ Then subtract: ( )² │(𝑥 + )² - ( )² │ │ │ Simplify: │(𝑥 + )² - │ │ │ Then add the units term: + │(𝑥 + )² - - │ │ │ Simplify: │(𝑥 + )² - │ └─────┬─────────────┘ └──────────────────┐ ┌ ┌──────┴──────┐ ┐ RE-INSERT INTO THE SQUARE-BRACKETS 4│ │ (𝑥 + )² - │ │ └ └─────────────┘ ┘
│ ▲ ▲ └───┴─────────┘
Finally, multiply out: 4(𝑥 + )² -
We cannot complete the square if the coefficient of𝑥 ² ≠ 1 ┌ ┌──────────────┐ ┐ So FIRST, we need to factorise the ½ out: ½ │ │𝑥 ² + 4𝑥 + 12 │ │ └ └──────┬───────┘ ┘ COMPLETE-SQUARE FOR BIT IN BRACKETS ┌──────────────────┘ │ Halve the coefficient of 𝑥 ┌─────┴─────────────┐ and put into the brackets: │(𝑥 + )² │ │ │ Then subtract: ( )² │(𝑥 + )² - ( )² │ │ │ Simplify: │(𝑥 + )² - │ │ │ Then add the units term: + │(𝑥 + )² - + 12 │ │ │ Simplify: │(𝑥 + )² + │ └─────┬─────────────┘ └──────────────────┐ ┌ ┌──────┴──────┐ ┐ RE-INSERT INTO THE SQUARE-BRACKETS ½ │ │ (𝑥 + )² + │ │ └ └─────────────┘ ┘
│ ▲ ▲ └───┴─────────┘
Finally, multiply out: ½(𝑥 + )² +
Now, if I write the same equation in completed square-form:
\(y=\left( x+2 \right) ^2\,\color{#3C7850}{-\,10}\)
It starts to become obvious why:
What is the lowest that (𝑥 -1)² can be? The answer is: ❛ 0 ❜ (You know why, dontcha?) So, what is the lowest that (𝑥 -1)² + 5 can be? If you're in any way confused about this - try filling in this table:𝑥 │ -3 -2 -1 0 1 2 3 4 ─────────┼───────────────────────────────────────────────── (𝑥 -1)² │ 16 9 4 ─────────┼───────────────────────────────────────────────── (𝑥 -1)² + 5 │ 21 14
Identify the column that gives the smallest value of \((x-1)^2\) \(+\,5\)
Work back up that column and consider why that value of \(x\) gives the minimum value of: \((x-1)^2\) \(+\,5\)
Sorry - you're on your own with this one - but start by completing the square - obviously!
We need to complete the square first: y = 2(𝑥 - 1)² + ... What is the lowest that (𝑥 -1)² can be? So, what is the lowest that (𝑥 -1)² + ... can be?
Factorising the Ό out is where an error is likely We cannot complete the square if the coefficient of𝑥 ² ≠ 1 ┌ ┌──────────────┐ ┐ So FIRST, we need to factorise the Ό out: Ό │ │𝑥 ² - 2𝑥 + 4 │ │ └ └──────┬───────┘ ┘ COMPLETE-SQUARE FOR BIT IN BRACKETS ┌──────────────────┘ │ ┌─────┴─────────┐ │(𝑥 - )² + │ └─────┬─────────┘ └──────────────────┐ ┌ ┌──────┴──────┐ ┐ RE-INSERT INTO THE SQUARE-BRACKETS Ό │ │ (𝑥 - )² + │ │ └ └─────────────┘ ┘
Multiply out the Ό and figure out how to find the minimium-value...